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Stability analysis of shallow wake flows
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Experimentally observed periodic structures in shallow (i.e. bounded) wake flows
are believed to appear as a result of hydrodynamic instability. Previously published
studies used linear stability analysis under the rigid-lid assumption to investigate
the onset of instability of wakes in shallow water flows. The objectives of this
paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid
assumption; (ii) to investigate the influence of the shape of the base flow profile on
the stability characteristics; (iii) to formulate the weakly nonlinear stability problem
for shallow wake flows and show that the evolution of the instability is governed by
the Ginzburg–Landau equation; and (iv) to establish the connection between weakly
nonlinear analysis and the observed flow patterns in shallow wake flows which are
reported in the literature. It is found that the relative error in determining the critical
value of the shallow wake stability parameter induced by the rigid-lid assumption is
below 10% for the practical range of Froude number. In addition, it is shown that
the shape of the velocity profile has a large influence on the stability characteristics
of shallow wakes. Starting from the rigid-lid shallow-water equations and using the
method of multiple scales, an amplitude evolution equation for the most unstable
mode is derived. The resulting equation has complex coefficients and is of Ginzburg–
Landau type. An example calculation of the complex coefficients of the Ginzburg–
Landau equation confirms the existence of a finite equilibrium amplitude, where the
unstable mode evolves with time into a limit-cycle oscillation. This is consistent with
flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar
et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found
between the saturation amplitude obtained from the Ginzburg–Landau equation
under some simplifying assumptions and the numerical data of Grubis̆ić et al. (1995).
Such consistency provides further evidence that experimentally observed structures in
shallow wake flows may be described by the nonlinear Ginzburg–Landau equation.
Previous works have found similar consistency between the Ginzburg–Landau model
and experimental data for the case of deep (i.e. unbounded) wake flows. However,
it must be emphasized that much more information is required to confirm the
appropriateness of the Ginzburg–Landau equation in describing shallow wake flows.

1. Introduction
Shallow wake flows are flows behind obstacles (such as islands and headlands),

where the transverse length scale of the flow, D, is much larger than the water
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depth, H (i.e. D/H � 1). Satellite images and aeronautical photographs show the
formation of eddies in the lee of islands and headlands (Wolanski, Imberger & Heron
1984; Ingram & Chu 1987). Photograph number 173 in Van Dyke (1982) provides
an excellent flow visualization of a shallow wake flow past an obstacle, where the
visualization material is oil and the obstacle is the leaking tanker Argo Merchant
which went aground on the Nantucket shoals in 1976 and settled at a 45◦ angle
to the current. To an observant hydrodynamicist, this photo not only shows an
environmental disaster, it also displays the striking difference between shallow wake
flow and the well-studied unbounded wake flow: although the Reynolds number of the
flow in the Nantucket disaster is 107 (Van Dyke 1982), the leaking oil displays a von
Kármán vortex street (i.e. sinuous form) flow pattern. Recall that the von Kármán
vortex street in unbounded flows is limited to Reynolds numbers much smaller
than 107.

The flow pattern of water in the wake of islands exhibits a complex eddy-like
motion. Field, laboratory and theoretical studies show that these eddies create complex
flows which can trap sediments and pollutants and thus create poor water quality
on the sheltered side of islands. Therefore, the understanding of island wake flow
is important in terms of water quality and plays a decisive factor in the location
of outfall discharges, mud disposal, cooling intakes, marine parks and reserves. In
addition, trapping of contaminants and sediment can have detrimental economic
effects on the marine culture industry in Hong Kong, for example. While islands
and headlands provide shelter for the marine culture from the prevailing winds (i.e.
high waves), poor water quality conditions induced by the eddies in the wakes of
islands and headlands can result in fish disease and mortality. During the summer
of 1994, it is believed that the trapping of low-salinity Pearl River water in sheltered
areas caused intense stratification and resulted in extensive seabed killings in Hong
Kong.

In view of their prominence in nature and their practical importance, shallow
wake flows have been analysed in the literature both experimentally and theoretically.
Different flow patterns have been observed in aerial photographs behind islands in the
sea and around mountains in the atmosphere (Wolanski et al. 1984; Ingram & Chu
1987). Shallow two-dimensional turbulent wake flows are studied experimentally by
Chen & Jirka (1995), Lloyd & Stansby (1997), Balachandar, Ramachandran & Tachie
(2000), Balachandar & Tachie (2001) and Tachie & Balachandar (2001). Chen &
Jirka (1995) showed experimentally that there are three different types of shallow
wakes: vortex shedding, unsteady bubble and steady bubble. It was found that the
flow patterns behind circular cylinders and flat plates depend mainly on a shallow
wake stability parameter S = cf D/H , introduced in earlier paper by Ingram & Chu
(1987), where cf is the bottom friction coefficient and D is the width or diameter of
a bluff body.

Analysis of flows behind obstacles in shallow water by Chen & Jirka (1995) and
Ingram & Chu (1987) indicates that the development of the wakes is different from
the wakes in deep water. First, limited water depth prevents the development of
three-dimensional instabilities typical of wakes in deep water for sufficiently large
Reynolds numbers. Second, bottom friction acts as a mechanism for suppression
of the transverse growth of disturbances. Experiments conducted by Chen & Jirka
(1995) confirm that the stabilization of large-scale motion occurs either in the near
wake or later within the far wake.

Theoretical investigations of the structure of shallow water flows behind bluff
bodies and their stability have been carried out by several authors (Chu, Wu &
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Khayat 1991; Schär & Smith 1993a, b; Grubis̆ić, Smith & Schär 1995; Chen & Jirka
1997; Yakubenko & Shugai 1999; Ghidaoui & Kolyshkin 1999). It was found that the
stability characteristics of shallow water flows depend on the magnitude of the bed-
friction number which characterizes the ratio of the bed-friction dissipation term to
the production term. Since the shallow wake patterns resemble two-dimensional wake
patterns observed in flows behind a cylinder at low Reynolds number, the concepts
of convective and absolute instability used to classify wake patterns at low Reynolds
number (Huerre & Monkewitz 1990; Monkewitz 1988) were also applied by Chen &
Jirka (1997) in an attempt to describe experimentally observed shallow wake flows at
high Reynolds number. Chen & Jirka (1997) used two-dimensional depth-averaged
shallow-water equations with the rigid-lid assumption to study convective and absolute
instability of shallow wakes. They derived the modified Orr–Sommerfeld equation
with additional terms that represent bottom friction (and the modified Rayleigh
equation for the inviscid case). Chen & Jirka (1997) also made comparison between
theoretical results and their experimental data (Chen & Jirka 1995). They found that
stability characteristics of the flow are in qualitative agreement with experimental
data.

The linear stability theory gives an indication of when a particular flow becomes
unstable and can be used to describe the structure of the critical motion which
takes place just above the threshold. However, the linear theory cannot predict the
evolution of the disturbance above the threshold. In order to study the further
development of instability one needs to use a nonlinear approach. Weakly nonlinear
theories (Stewarston & Stuart 1971; Huerre & Rossi (1998)) are used to develop
an evolution equation for the most unstable mode. One of the popular dynamical
models which is used to study nonlinear flow dynamics is the Ginzburg–Landau
equation. It is shown, for example, in Provansal, Mathis & Boyer (1987), Schumm,
Berger & Monkewitz (1994) and Leweke & Provansal (1995) that the Ginzburg–
Landau equation can be successfully used to describe experimental observations of
flow behind bluff bodies for a wide range of Reynolds numbers. The coefficients
of the Ginzburg–Landau equation are determined from experimental data. Hence,
in this case, it is used as a model equation and the problem of deriving this
equation from hydrodynamic equations is still an open problem for flows behind bluff
bodies.

To the authors’ knowledge, the first paper where the Ginzburg–Landau equation
was derived from the Navier–Stokes equations for the case of a plane Poiseuille
flow was Stewartson & Stuart (1971). Recently Feddersen (1998) used a weakly
nonlinear approach to study the evolution of shear waves in near-shore flows. The
method of multiple scales is used in their papers (see, for example, Kevorkian &
Cole 1996) to derive the amplitude evolution equation for the most unstable
mode.

Thus, the Ginzburg–Landau equation is used in the literature in two ways: first,
as a phenomenological model and second, as an equation which appears naturally
in many hydrodynamical applications when weakly nonlinear analysis is used. This
paper shows that, for the case of shallow wake flows, the Ginzburg–Landau equation
does not have to be assumed; it can be derived from the rigid-lid shallow-water
equations.

The present paper is devoted to the analytical and numerical study of the linear and
weakly nonlinear stability of flows in shallow wakes. Where possible, the connection
between stability theory and observed features reported in the literature is sought.
The paper is organized as follows. First, the accuracy of the rigid-lid assumption
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for the case of wake flows is evaluated. The results of linear stability calculations
show that the error in using the rigid-lid assumption for calculation of critical values
of the stability parameter does not exceed 10%. Second, the influence of the shape of
the velocity profile on the absolute and convective stability boundary is investigated.
Third, weakly nonlinear analysis is used to derive an amplitude evolution equation
above the threshold. It is shown that the evolution equation is the complex Ginzburg–
Landau equation. The coefficients of the equation are calculated. It is found that for
one set of the parameters the Landau constant is negative and therefore a finite-
amplitude equilibrium is possible. This is consistent with the patterns observed by
Ingram & Chu (1987), Chen & Jirka (1995), Balachandar, Tachie & Chu (1999), and
Balachandar & Tachie (2001).

2. Linear stability analysis
2.1. Influence of the Froude number on the stability characteristics

In this section some estimates of the accuracy of the rigid–lid assumption are provided.
Under the rigid-lid assumption the system of shallow water equations can be reduced
to a single equation where the unknown function is the stream function of the
flow. Weakly nonlinear theory applied to this equation results in a single-amplitude
evolution equation of Gizburg–Landau type. Hence, the accuracy of the rigid-lid
assumption needs to be analysed in order to justify the weakly nonlinear analysis.
Since one of the major objectives of the paper is to derive and analyse an amplitude
equation which describes the transition from a stable to convectively unstable wake,
we are mainly interested in the convective instability boundary. The influence of the
Froude number on the convective stability characteristics of the flow is investigated
numerically. In addition, experimental data of Chen & Jirka (1995) are used in an
attempt to justify the use of the rigid-lid assumption for the calculation of the absolute
instability boundary.

The two-dimensional inviscid shallow-water equations are (e.g. Chaudhry 1993;
Liggett 1994):

∂H

∂T
+

∂

∂X
(UH ) +

∂
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(V H ) = 0, (1)

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
+ g

∂H

∂X
− gS0x + cf

U
√

U 2 + V 2

2H
= 0, (2)

∂V

∂T
+ U

∂V

∂X
+ V

∂V

∂Y
+ g

∂H

∂Y
− gS0y + cf

V
√

U 2 + V 2

2H
= 0, (3)

where X and Y are the spatial coordinates, T is the time, U and V are the
depth-averaged velocity components in the X- and Y -directions, respectively, S0x =
−∂zb(x, y)/∂x and S0y = −∂zb(x, y)/∂y are the bed slopes, zb(x, y) is the vertical
distance from an arbitrary datum to the bed of the flow, H is the water depth, cf

is the friction coefficient such that the wall shear along the x- and y-directions
is τwx = 1

2
cf ρU

√
U 2 + V 2 and τwy = 1

2
cf ρV

√
U 2 + V 2, respectively. Semi-empirical

formulae for evaluation of cf can be found in Schlichting (1979).
Let the scale for length, time and velocity be b, b/Ua and Ua , respectively,

where b is some characteristic length scale (which will be defined later) and Ua

is the ambient velocity. Then equations (1)–(3) can be written in the following
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dimensionless form:
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where x and y are the spatial coordinates, t is the time, u and v are the velocity
components, h is the water depth and Frb = Ua/

√
gb is a Froude-like number.

We assume that the base flow has the following structure:

u0 = (u0(y), 0). (7)

Consider a perturbed solution to equations (4)–(6) in the form

u = u0(y) + u′(y) e−λt+ikx, (8)

v = v′(y) e−λt+ikx, (9)

h =
H0

b
+ h′(y) e−λt+ikx, (10)

where H0 is the undisturbed water depth, u′, v′ and h′ are the complex amplitudes
of the normal perturbations, k is the wavenumber and λ= λr + iλi is a complex
eigenvalue. Substituting (8)–(10) into equations (4)–(6) and linearizing the equations
in the neighbourhood of the base flow we obtain the following system of ordinary
differential equations for u′, v′ and h′:
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0S
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2H0

)
− λu′ = 0 (13)

with the boundary conditions

v′(±∞) = 0, (14)

where S = cf b/H0.
The system (11)–(13) together with the boundary conditions (14) forms an

eigenvalue problem. The eigenvalues, λs = λrs + iλis , s = 1, 2, . . ., determine the linear
stability of the base flow described by (7). This base flow is said to be linearly stable
if λrs > 0 for all s, and linearly unstable if λrs < 0 for at least one value of s. The
numerical method for the solution of eigenvalue problem is described in detail in
Ghidaoui & Kolyshkin (1999).

Some estimates of the influence of the Froude number on the stability boundary
of transverse shear flows in shallow water flows are presented in Falqués & Iranzo
(1994), Ghidaoui & Kolyshkin (1999) and Kolyshkin & Ghidaoui (2002). Falqués &
Iranzo (1994) investigated the stability of a mean alongshore current in near-shore
flows. They found that the error in the growth rates of disturbances due to the
rigid-lid assumption for plane sloping beaches is 12% when the Froude number is
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0.63 and 28% when the Froude number is 0.89. Ghidaoui & Kolyshkin (1999) and
Kolyshkin & Ghidaoui (2002) studied the linear stability of transverse shear flows in
compound and composite open channels. One of the widely used assumptions in the
analysis of flows in open systems is the rigid-lid assumption. This assumption consists
of replacing the gravity-driven free-surface flow by an equivalent pressure-driven flow
between two parallel horizontal plates with the top plate being inviscid (acting like a
lid) and the bottom plate having the same cf as the original channel. The distance
between the plates is equal to the original water height. By examining different base
velocity profiles Ghidaoui & Kolyshkin (1999) showed that the rigid-lid assumption
works well for weak shear flows and/or small Froude numbers. In addition, they
showed that the rigid-lid equations are the limit of the shallow-water equations when
the Froude number tends to zero. In the present paper we compare the results of
linear stability calculations for the problem (11)–(14) with the results obtained with
the rigid-lid assumption.

Two-dimensional dimensionless shallow-water equations under the rigid-lid
assumption have the form
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∂x
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= 0, (15)
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where p is the dimensionless pressure such that ∂p/∂x = −S0x/Fr2
b and ∂p/∂y =

−S0y/Fr2
b.

Using (8), (9) and a similar expression for the perturbation of pressure, and
eliminating pressure p from (16), (17) we obtain the following modified Rayleigh
equation for the function v′(y):

(iku0 + Su0)
d2v′

dy2
+ S

du0

dy

dv′

dy
− v′

(
ik

d2u0

dy2
+ ik3u0 + 1

2
Sk2u0

)
− λ

(
d2v′

dy2
− k2v′

)
= 0

(18)

with the boundary conditions (14).
The transverse velocity profile of a self-preserving unbounded wake for low

Reynolds numbers can be approximated by the formula

u0(y) = 1 +
2R

1 − R
[1 + sinh2N (αy)]−1, (19)

where R = (Uc − Ua)/(Uc + Ua) is the velocity ratio, α = sinh−1(1), Uc is the velocity
on the centreline, y = Y/b, b is the wake half-width (which is defined as the distance
from the axis of the wake such that U (b) = Ū = (Uc + Ua)/2) and N is the ‘shape’
parameter, N � 1. The profile (19) is suggested by Monkewitz (1988) after careful
analysis of available experimental data and it satisfactorily represents measured
streamwise velocity distributions in the near wake of circular cylinders for small
Reynolds numbers (up to Re = 48.5). Recent experimental results (Balanchandar &
Tachie 2001) suggest that a similar velocity distribution can also be used for shallow
water layers. The velocity distribution u0(y) given by (19) is shown in figure 1 for two
values of N and three values of R. The curve for N = 2 is similar to the measured
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correspond to the cases N = 1 and N = 2, respectively.
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Figure 2. The percentage difference ∆ between the values of Sc with and without the
rigid-lid assumption for (a) the case b/H0 = 5 and (b) b/H0 = 50.

profile by Socolofsky, von Carmer & Jirka (2003) for the case of an unsteady bubble,
while N = 1 is similar to the vortex street profile.

The rigid-lid assumption can be evaluated by solving problems (11)–(14) and (18),
(14) numerically for different values of Froude number and other parameters of
the problem that describe the base velocity profile (19) and comparing the critical
values, Sc, of the parameter S. The set of all points in the (k, S)-plane for which one
eigenvalue satisfies the condition λr = 0 while all other eigenvalues have positive real
parts defines the neutral curve, Sn(k). The critical value, Sc, of the stability parameter
S is defined as the maximum, over all k, of the values Sn(k) of S:

Sc = max
k

Sn(k). (20)

Linear stability problems are solved by a pseudospectral collocation method based
on Chebyshev polynomials (Ghidaoui & Kolyshkin 1999). The critical values of
the stability parameter for finite Froude number Frb are compared with those for
the rigid-lid assumption. The results of the comparison (in terms of the percentage
difference) are shown in figures 2(a) and 2(b) for N =1, b/H0 = 5, b/H0 = 50 and
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Figure 3. (a) Experimental classification of shallow wakes behind a circular cylinder and
(b) a plate as a function of the Froude number. The data are computed from Chen & Jirka
(1995), table 1 for (a) and table 2 for (b).

different values of R. These two values of b/H0 are chosen since the condition
b/H0 � 1 is consistent with the shallow-water approximation. The Froude number
FrH (based on the undisturbed water depth) is related to Frb by means of the formula
FrH = Frb

√
b/H0. In the experiments conducted by Chen & Jirka (1995) FrH was in

the range 0.1–0.7 while in real island wakes FrH is about 0.1–0.2. In order to restrict
consideration to values of FrH below 0.7, it is sufficient to choose Frb below 0.3 for the
case b/H0 = 5 and below 0.1 for the case b/H0 = 50. Thus, the error in determining the
critical value of the S parameter will be less than 10% as follows from figure 2. Taking
into account experimental inaccuracy (Chen & Jirka reported that their experimental
error is of the order 10%) it is safe to conclude that the rigid-lid assumption works
well for calculation of the critical values of the parameter S for the range of Froude
numbers typical for shallow wakes.

The concepts of absolute and convective instability are developed in the literature in
order to describe spatio-temporal dynamics of perturbations and are used to classify
different flow patterns in shallow wakes (Chen & Jirka 1997). Convective instability
corresponds to the case when perturbations grow initially at any fixed location in the
laboratory frame, but then eventually are swept away and disappear from the flow
region. On the other hand, if perturbations grow exponentially in time at any fixed
location in the laboratory frame, the instability is said to be absolute. In order to
provide experimental evidence for the relative independence of the absolute instability
boundary from the Froude number we have calculated the Froude number for all
observations given in tables 1 and 2 in Chen & Jirka (1995). The results are shown
in figures 3(a) and 3(b). The parameter S is defined S = cf D/H , where D is the
transverse body dimension, H is water depth and cf is the bottom friction coefficient
defined by semi-empirical formulae (see Schlichting 1979). For example, for smooth
channels with 5000 � Re= UaH/ν � 3 × 106,

1
√

cf

= −4 log

(
1.25

4Re
√

cf

)
.

For rough channels, cf depends on both Re and the relative roughness coefficient.
According to the classification presented in Chen & Jirka (1997) the transition
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Figure 4. The critical values of the stability parameter Sc versus R for two values of N .
The solid and dashed curves represent the convective and absolute instability boundary,
respectively.

between a vortex street and an unsteady bubble corresponds to the transition from
an absolutely unstable wake to a convectively unstable wake. Similarly, the transition
from an unsteady bubble to a steady bubble corresponds to the transition from a
convectively unstable to a stable wake.

As can be seen from the figure, the absolute instability boundary hardly depends
on the Froude number; therefore one can expect to use the rigid-lid assumption for
absolute instability calculations without any serious error. The computational proof
of the relative independence of the convective instability boundary of the Froude
number is given in figure 2. There is not enough experimental data to conclude
that this boundary is not affected by the value of the Froude number. However, as
mentioned above, theoretical results allow one to use the rigid-lid assumption within
10% error in the region 0<FrH < 0.7 and the rigid-lid assumption is adopted in the
remainder of the paper.

2.2. Influence of the shape of the velocity profile on the absolute
and convective stability boundary

Another set of computations is done in order to study the influence of the shape
of the base velocity profile (19) on the stability characteristics of shallow wakes.
Two basic approaches have been used in the literature in order to perform a linear
stability analysis of unbounded wakes for low Reynolds numbers. The base velocity
profile is chosen on the basis of experimental data (Monkewitz 1988; Triantafyllou,
Triantafyllou & Chryssostomidis 1986) or is generated numerically using two-
dimensional Navier–Stokes equations (Hannemann & Oertel 1989). In order to
compare experimental data with the results of a linear stability analysis, Chen &
Jirka (1997) used the maximum return velocity of the wake as the only link between
experimental measurements and theoretical data. Although Chen & Jirka’s theoretical
results correctly predict the sequence of transitions in experimentally observed wake
patterns, their experimental data do not match well with the predictions of the linear
stability analysis.

In order to shed some light on this discrepancy a series of numerical experiments
were performed with different values of R and N in (19). Note that in Chen &
Jirka’s (1997) paper the value of N was fixed at 1. The critical values of the stability
parameter Sc are plotted against R in figure 4 for different values of N and R. The
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Figure 5. The curves λr = 0 for the shallow wake with the parameters N = 2, R = −1.1
and different values of S.

solid curves in figure 4 represent the dividing line between convectively unstable and
stable wakes. It is seen from the figure that the critical values Sc are quite sensitive
to the variation of the parameter N , that is, to the shape of the base velocity profile.
These results clearly indicate that in order to compare experimental results with
theoretical data from the linear stability analysis one needs to know not only the
maximum return velocity of the wake but also the shape of the base velocity profile.

To distinguish between absolute and convective instabilities one has to perform an
eigenvalue search for a saddle point in the (k, λ)-domain (see the relevant discussion
in Huerre & Monkewitz 1990). In this case both the wavenumber and the eigenvalue
are assumed to be complex of the form k = kr + iki , λ= λr + iλi . In order to construct
the dividing line between absolute and convective instabilities one assumes λr = 0
and performs an eigenvalue search for different kr , ki , R and S. A sample result of
such calculations is shown in figure 5 where a family of curves corresponding to
the case λr = 0 is constructed for different values of S (which are indicated on the
figure). The values of N and R are fixed at 2 and −1.1, respectively. The saddle
point (indicated as SP in figure 5) has the coordinates kr = 1.15, ki = −0.63 and
corresponds to S = 0.5075. A similar search is performed for the values of R in the
interval (−1.4, 0) and the stability map is shown in figure 4. The dashed lines are
the dividing lines between convective and absolute instabilities for two values of N ,
namely N =1 and N = 2.

Chen & Jirka argued that the value N = 1 is chosen for their analysis because, as can
be seen from the results for unbounded wakes (Monkewitz 1988), the critical Reynolds
numbers change only slightly over the range 1 <N < 5 if R � −1 and if R � −1 the
wake flow approaches N = 1. It is seen from figure 4 that for unbounded wakes (S = 0)
the values of R that divide regions of convective and absolute instabilities are close to
each other (R = −0.838 for N = 2 and R = −0.904 for N =1). However, as R decreases
further, the difference between the critical values of the stability parameter Sc for two
values of N is increasing. Thus one can conclude that the stability boundaries (both
absolute and convective) are quite sensitive to the shape of the base velocity profile.

Finally, the location of the saddle points in the complex (kr, ki)-plane is shown in
figure 6 for N = 1 and N = 2. It is seen from the figure that the spatial amplification
rates at saddle points are quite different for the two velocity profiles with N = 1 and
N = 2.
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Figure 6. The loci of the saddle points in the (kr , ki)-plane for different values of R. The
symbols � and � correspond to the cases N = 1 and N = 2, respectively.

3. Weakly nonlinear analysis
Linear analysis is used in the previous sections to define the onset of instability.

The next natural step is to describe the nonlinear evolution of the most unstable
linear mode in an attempt to reconcile the theoretical prediction with the observed
shallow wake structures. It is believed that experimentally observed periodic structures
in shallow wake flows (Ingram & Chu 1987; Chen & Jirka 1995; Balachandar
et al. 1999) appear as a result of hydrodynamic instability. Balachandar et al. (1999)
classify the flows as deep–shallow wakes and shallow–shallow wakes on the basis of
the presence or absence of the vortex street. Experiments show that deep–shallow
wake flow patterns closely resemble the structure of deep two-dimensional bluff-body
wakes. The vortices in such cases are distinct and well organized; they increased in size
downstream from the obstacle. The vortex street pattern is shown to be maintained
over a large distance downstream (about 20 diameters for the experiments with a small
cylinder in Chen & Jirka (1995) and about 200 plate widths for the experiments with
a plate in Balachandar & Tachie (2001). Shallow–shallow wakes are characterized
by relatively narrow wake regions. In addition, vortex street patterns either were not
observed at all or appeared to be relatively weak and less organized in comparison
with flows at larger depths. It is also found that the degree of variation from the
classical vortex street flow increased downstream from the plate. Similar flow patterns
were observed by Chen & Jirka (1995) (they classify the flows as vortex street,
unsteady bubble and steady bubble).

Weakly nonlinear analysis has been found to be successful in describing the onset
of periodicity in deep wake flows. The Landau equation is often used to model a
supercritical Hopf bifurcation when a linearly unstable mode evolves with time into a
limit-cycle oscillation. Mathis, Provansal & Boyer (1984) and Provansal et al. (1987)
showed that the dynamics of deep water flow behind a cylinder can be described by
the Landau equation. The coefficients of the Landau equation were calculated from
experimental data for the range of Reynolds numbers near the threshold.

A global stability analysis performed by Noack & Eckelmann (1994) confirmed the
experiments by Provansal et al. (1987), that is, the onset of periodicity is found to be
described by the Landau equation. Reasonable agreement between the experimental
and theoretical values of the coefficients of the Landau equation is found. Another
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interesting conclusion from the experiments is that the growth rates and nonlinear
frequency variations do not depend on the measuring point, in other words a single
Landau equation can be used to describe the wake dynamics.

Taking into account some similarities between deep wake flows and shallow water
flows weakly nonlinear theory is applied in this section to develop an evolution
equation within the framework of the parallel flow assumption. Our analysis shows
that the development of instability is governed by the complex Ginzburg–Landau
equation (which reduces to the Landau equation if the amplitude A does not depend
on the streamwise coordinate ξ ).

Introducing the stream function ψ(x, y, t) by the relations

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (21)

the system (15)–(17) of the shallow-water equations under the rigid-lid assumption
can be rewritten in the form

(	ψ)t + ψy(	ψ)x − ψx(	ψ)y +
cf

2h
	ψ

√
ψ2

x + ψ2
y

+
cf

2h
√

ψ2
x + ψ2

y

(
ψ2

yψyy + 2ψxψyψxy + ψ2
xψxx

)
= 0, (22)

where 	 is the Laplace operator in two dimensions, the subscripts indicate the
derivatives with respect to the variables x and y and the wake half-width b is chosen
as the length scale. Note that the use of the rigid-lid assumption allows one to
express the perturbed field in terms of a stream function and therefore obtain a single
amplitude evolution equation as shown below. If the full system of shallow-water
equations were used instead, the perturbed quantities could not be expressed in terms
of the stream function alone and (independent) perturbations of u, v and h should be
considered. As a result, a system of coupled nonlinear amplitude evolution equations
of the Ginzburg–Landau type would emerge.

Consider a perturbed solution to (22) of the form

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + . . . (23)

where ε is a small parameter and ψ0y = u0. Let us assume first that only two terms
on the right-hand side of (23) are taken into account. Substituting (23) into (22) and
collecting the terms of order ε we obtain

(	ψ1)t + ψ0y(	ψ1)x − ψ1xψ0yyy + S/2[ψ0yψ1xx + 2ψ0yψ1yy + 2ψ0yyψ1y] = 0, (24)

where S = cf b/H0 = cf /h is the stability parameter. Assuming that the perturbation
ψ(x, y, t) has the form

ψ1(x, y, t) = ϕ1(y) exp[ik(x − ct)] + c.c. (25)

(c.c. means ‘complex conjugate’) and substituting (25) into (24) we obtain

L1ϕ1 = 0, (26)

where the operator L1 is given by

L1ϕ ≡ ϕyy

(
u0 − c +

Su0

ik

)
+ Sϕy

u0y

ik
+ ϕ

(
k2c − k2u0 − u0yy − u0kS

2i

)
. (27)
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One can see from (26) and (27) that equation (18) is recovered. The function ϕ1

satisfies the boundary conditions

ϕ1(±∞) = 0. (28)

The critical values of the parameters k, S and c for the case N = 1, R = −0.5 are
kc = 0.926509, Sc = 0.195477 and c = 0.624193, respectively, that is, the flow is stable
if S > 0.195477 and convectively unstable if S < 0.195477. Here c denotes the wave
speed at k = kc and S = Sc.

Weakly nonlinear theory (Stewartson & Stuart 1971) is used to analyse the effect
of nonlinearities analytically. In accordance with the linear theory the most amplified
mode at S = Sc, k = kc is given by (25) where the function ϕ1(y) is the eigenfunction
of the linear stability problem and therefore can be replaced by Cϕ1(y), where the
constant C cannot be determined from the linear stability theory. In order to study
the nonlinear evolution of the most unstable mode (25) we restrict ourselves to the
conditions around the point Sc, kc. In particular, we assume that the parameter S is
slightly below the critical value Sc, namely

S = Sc(1 − ε2). (29)

In this case the constant C is replaced by a slowly varying function of the spatial
coordinate and time. The slow variation of this function in space and time can
represent the wave packet. In particular, we introduce ‘slow’ time τ and stretched
longitudinal coordinate ξ which moves with a group velocity cg:

τ = ε2t, ξ = ε(x − cgt).

Therefore, the stream function ψ is a function of x, t , ξ and τ : ψ = ψ(x, t, ξ (x, t), τ (t)).
Using the chain rule, we obtain

∂

∂t
ψ(x, t, ξ (x, t), τ (t)) =

∂ψ

∂t
+

∂ψ

∂ξ

∂ξ

∂t
+

∂ψ

∂τ

∂τ

∂t

=
∂ψ

∂t
− εcg

∂ψ

∂ξ
+ ε2 ∂ψ

∂τ

and

∂

∂x
ψ(x, t, ξ (x, t), τ (t)) =

∂ψ

∂x
+

∂ψ

∂ξ

∂ξ

∂x

=
∂ψ

∂x
+ ε

∂ψ

∂ξ
.

In this case the differential operators ∂/∂t and ∂/∂x are replaced by

∂

∂t
→ ∂

∂t
− εcg

∂

∂ξ
+ ε2 ∂

∂τ
(30)

and
∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
, (31)

respectively. The function ψ1 in (23) is sought in the form

ψ1 = A(ξ, τ )ϕ1(y) exp[ikc(x − ct)] + c.c. (32)

where c is the wave speed at k = kc, S = Sc and A is slowly varying amplitude.
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In order to find the equation which describes the evolution of A one needs to
consider higher terms of the perturbation expansion (23). Substituting (23) and (30)–
(31) into (22) and collecting the terms of order ε gives

Lψ1 = 0, (33)

where the operator L is defined as

Lϕ ≡ ϕxxt +ϕyyt +ψ0yϕxxx +ψ0yϕyyx −ψ0yyyϕx + 1
2
Sc(ψ0yϕxx +2ψ0yyϕy +2ψ0yϕyy). (34)

Collecting the terms of order ε2 gives

Lψ2 = cg(ψ1xxξ + ψ1yyξ ) − 2ψ1xξt − 3ψ0yψ1xxξ − ψ1yψ1xxx

− ψ1yψ1yyx − ψ0yψ1ξyy + ψ1xψ1xxy + ψ1xψ1yyy + ψ1ξψ0yyy

− 1
2
Sc[ψ1xxψ1y + 2ψ1xξψ0y + 2ψ1yyψ1y + 2ψ1xψ1xy − 2ψ0yψ0yy]. (35)

Finally, collecting the terms of order ε3 we obtain

Lψ3 = cg(ψ2xxξ + ψ2yyξ + 2ψ1xξξ ) − ψ1xxτ − 2ψ2xξt − ψ1ξξ t − ψ1yyτ

− 3u0ψ2xxξ − 3u0ψ1xξξ − ψ1yψ2xxx − 3ψ1yψ1xxξ − ψ2yψ1xxx − ψ2yψ1yyx

− ψ1yψ2yyx − ψ1yψ1ξyy − u0ψ2ξyy + ψ2xψ1xxy + ψ1ξψ1xxy + ψ1xψ2xxy

+ 2ψ1xψ1xyξ + ψ1xψ2yyy + ψ2xψ1yyy + ψ1ξψ1yyy + ψ2ξu0yy

− 1
2
Sc

[
ψ1xxψ2y +

3ψ1xxψ
2
1x

2u0

+ ψ2xxψ1y + 2ψ1ξψ1y + 2u0ψ2xξ + u0ψ1ξξ

+ 2ψ1yyψ2y + 2ψ2yyψ1y − u0ψ1xx − 2u0yψ1y − 2u0ψ1yy + 2ψ1xψ2xy

+ 2ψ1xψ1ξy + 2ψ2xψ1xy + 2ψ1ξψ1xy

]
. (36)

The form of the right-hand side of (35) and the form of the function ψ1 (see (32))
suggests that the function ψ2 should be sought in the following form:

ψ2 = AA∗ϕ
(0)
2 (y) + Aξϕ

(1)
2 (y) exp[ikc(x − ct)] + A2ϕ

(2)
2 (y) exp[2ikc(x − ct)] + c.c. (37)

where A∗ denotes the complex conjugate of A, the subscripts denote the order of the
approximation and the superscripts denote the index of the harmonic component. To
explain, let us consider the linear terms with respect to ψ1 on the right-hand side of
(35):

cg(ψ1xxξ + ψ1yyξ ) − 2ψ1xξt − 3ψ0yψ1xxξ − ψ0yψ1ξyy + ψ1ξψ0yyy − Scψ0yψ1xξ .

All the terms in the above expression contain the derivative with respect to ξ and are
proportional to exp[ikc(x − ct)] in accordance with (32). The operator L on the left-
hand side of (35) does not contain derivatives with respect to ξ . Thus, we choose the
solution ψ

(1)
2 which will balance the linear terms with respect to ψ1 on the right-hand

side of (35) in the form

ψ
(1)
2 = Aξϕ

(1)
2 (y) exp[ikc(x − ct)].

Similarly one can explain the appearance of the other terms in (37).
Substituting (32) for ψ1 and (37) for ψ2 into (35) and collecting terms proportional

to AA∗ gives

2Sc

(
u0ϕ

(0)
2yy + u0yϕ

(0)
2y

)
= ikc

(
ϕ1yϕ

∗
1yy − ϕ∗

1yϕ1yy + ϕ1ϕ
∗
1yyy − ϕ∗

1ϕ1yyy

)
− 1

2
Sc

[
k2

c

(
ϕ1ϕ

∗
1y + ϕ∗

1ϕ1y

)
+ 2

(
ϕ∗

1yϕ1yy + ϕ∗
1yyϕ1y

)]
(38)
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with the boundary conditions

ϕ
(0)
2 (±∞) = 0. (39)

Similarly, collecting the terms that are proportional to Aξ exp[ikc(x − ct)] yields

ϕ
(1)
2yy

(
u0 − c +

u0Sc

ikc

)
+

Scu0y

ikc

ϕ
(1)
2y + ϕ

(1)
2

(
k2

c c − k2
cu0 − u0yy − u0kcSc

2i

)

=
1

ikc

ϕ1

(
−2k2

c c + 3k2
cu0 + u0yy − k2

c cg − ikcu0Sc

)
+

1

ikc

(cg − u0)ϕ1yy (40)

with the boundary conditions

ϕ
(1)
2 (±∞) = 0. (41)

It can be seen that the left-hand side of equation (40) is exactly the same as the
left-hand side of equation (26) (if ϕ1 is replaced by ϕ

(1)
2 ). Therefore, in accordance

with Fredholm’s alternative (see, for example, Zwillinger 1998), equation (40) has a
solution if and only if its right-hand side is orthogonal to all eigenfunctions of the
corresponding homogeneous adjoint problem.

The adjoint operator, La
1, and adjoint function ϕa

1 of La
1 are defined as follows:∫ ∞

−∞
ϕa

1L1(ϕ1) dy =

∫ ∞

−∞
ϕ1L

a
1

(
ϕa

1

)
dy. (42)

Note that if ϕ1 is an eigenfunction of the problem (26), (28), then both terms in (42) are
equal to zero. This will also mean that ϕa

1 is an eigenfunction of the adjoint problem
and that the adjoint operator La

1 must have the same spectrum as the operator L1.
Integrating equation (26) by parts and using boundary conditions (28) we obtain

the adjoint problem in the form

La
1ϕ

a
1 = 0, (43)

with the boundary conditions

ϕa
1 (±∞) = 0, (44)

where

La
1ϕ

a
1 ≡ ϕa

1yy(ikcu0 + Scu0) + ϕa
1y(2ikcu0y + Scu0y)

+ ϕa
1

(
−ik3

cu0 − u0kcSc

2

)
− ikcc

(
ϕa

1yy − k2
cϕ

a
1

)
. (45)

Hence, the solvability condition for equation (40) can be written in the form∫ ∞

−∞
ϕa

1

[
ϕ1

(
−2k2

c c + 3k2
cu0 + u0yy − k2

c cg − ikcu0Sc

)
+ (cg − u0)ϕ1yy

]
dy = 0. (46)

Finally, collecting the terms proportional to A2 exp[2ikc(x − ct)] yields

[Scu0 + 2ikc(u0 − c)]ϕ(2)
2yy + Scu0yϕ

(2)
2y − ϕ

(2)
2

[
8ik3

c (u0 − c) + 2ikcu0yy + 2Sck
2
cu0

]
= ikc(ϕ1ϕ1yyy − ϕ1yϕ1yy) − 1

2
Sc

(
2ϕ1yϕ1yy − 3k2

cϕ1ϕ1y

)
(47)

with the boundary conditions

ϕ
(2)
2 (±∞) = 0. (48)

The evolution of the amplitude A is determined from the terms of order ε3. Equation
(36) has a solution if and only if the right-hand side of (36) is orthogonal to
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eigenfunction ϕa
1 of the adjoint problem (43), (44). Multiplying the right-hand side

of (36) by ϕa
1 and integrating with respect to y from −∞ to +∞ we obtain the

Ginzburg–Landau equation in the form

Aτ = σA + δAξξ + µ|A|2A, (49)

where the complex coefficients σ , δ and µ have the form

σ =
σ1

β
, δ =

δ1

β
, µ =

µ1

β
(50)

with

β =

∫ ∞

−∞
ϕa

1

(
ϕ1yy − k2

cϕ1

)
dy,

σ1 = 1
2
Sc

∫ ∞

−∞
ϕa

1

(
2u0ϕ1yy + 2u0yϕ1y − k2

cu0ϕ1

)
dy,

δ1 =

∫ ∞

−∞
ϕa

1

[
ϕ

(1)
2yy(cg − u0) + ϕ

(1)
2

(
−k2

c cg − 2k2
c c + 3k2

cu0

+ u0yy − ikcu0Sc

)
+ ϕ1

(
2ikccg + ikcc − 3ikcu0 − 1

2
u0Sc

)]
dy,

µ1 =

∫ ∞

−∞
ϕa

1

{
6ik3

cϕ
(2)
2 ϕ∗

1y − 2ikcϕ
∗
1yϕ

(2)
2yy + 3ik3

cϕ
∗
1ϕ

(2)
2y

+ 2ik3
cϕ1ϕ

(0)
2y − 2ikcϕ1yyϕ

(0)
2y + ikcϕ

(2)
2y ϕ∗

1yy

− ikcϕ
∗
1ϕ

(2)
2yyy + 2ikcϕ1ϕ

(0)
2yyy + 2ikcϕ

∗
1yyyϕ

(2)
2

− 1
2
Sc

[
−2k2

cϕ1ϕ
(0)
2y + 3k2

cϕ
∗
1ϕ

(2)
2y − 3k4

c

2u0

ϕ2
1ϕ

∗
1

+ 4ϕ1yyϕ
(0)
2y + 2ϕ∗

1yyϕ
(2)
2y + 4ϕ1yϕ

(0)
2yy + 2ϕ

(2)
2yyϕ

∗
1y

]}
dy. (51)

Hence, in order to find the coefficients of the Ginzburg–Landau equation (49), one
needs to find the critical values kc, Sc and c from the solution of the linear stability
problem (26), (28), find the corresponding eigenfunction ϕ1, solve the adjoint problem
(43), (44) and find the corresponding adjoint eigenfunction ϕa

1 , solve three linear
boundary-value problems (38)–(41), (47)–(48) and then evaluate the integrals (51).

4. Numerical results and discussion
A dispersion relation is defined at S = Sc as the variation with k of the eigenvalue

c of the differential equation (26) with boundary conditions (28):

ωc(k) + iσc(k) = kc, (52)

where c is the critical eigenvalue. At k = kc the following conditions are satisfied:

σc(kc) = 0,
∂ωc(kc)

∂k
= cg,

∂σc(kc)

∂k
= 0, (53)

where cg is the group velocity. It is known (see, for example, Huerre & Rossi 1998)
that in the neighbourhood of k = kc the dispersion relation (52) can be approximated
by a parabola

ωc(k) + iσc(k) = a0(k − kc)
2 + a1(k − kc) + a2. (54)
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represent calculated values. The dashed line is the best-fit parabola.
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The dispersion curve near the critical wavenumber kc = 0.926509 is shown in
figures 7(a) and 7(b). The circles represent calculated values while the solid lines
are parabolas (54) obtained by the method of least-squares from the calculated
values. In particular, we have

ωc(k) = −0.107631(k − 0.926509)2 + 0.497022(k − 0.926509) + 0.624193, (55)

σc(k) = −0.13454(k − 0.926509)2 + 1.3 × 10−6(k − 0.926509) + 2.5 × 10−12. (56)

Since Chebyshev polynomials were used for calculations, the interval −∞ <y < +∞
was mapped onto the interval −1 <η < 1 by means of the transformation
η =2/π arctan y. The real and imaginary parts of the normalized eigenfunction ϕ1(η)
and the adjoint eigenfunction ϕa

1 (η) are shown in figure 8. The graph of the main

flow correction ϕ
(0)
2 (η) is presented in figure 9. Finally, the graphs of the real and

imaginary parts of the functions ϕ
(1)
2 (η) and ϕ

(2)
2 (η) are given in figure 10.

It follows from (55)–(56) that all the conditions (53) are satisfied and that
cg = 0.497022. The group velocity calculated from the solvability condition (46) is
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equal to cg = 0.4970226 − i0.00000041. As one can see, the two values of cg agree
well. Such a comparison is a useful check of algebra and numerical calculations.
The coefficient δ in the Ginzburg–Landau equation can be calculated as follows (see
Stewartson & Stuart 1971):

δ = −1

2

∂2σc

∂k2
+ i

1

2

∂2ωc

∂k2
. (57)

Using (55)–(57) we obtain

δ = 0.13454 − i0.107631. (58)

As another check of our results we calculated the coefficient δ using formula (51).
The result is δ = 0.1345396 − i0.107573. Again, the two values of δ are close to each
other for both the real and imaginary parts.
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The coefficients σ and µ in the Ginzburg–Landau equation are calculated from
(51) and have the form

σ = 0.08989 + i0.00035, µ = −4.33700 − i9.49653. (59)

Since the real part of µ is negative, finite-amplitude equilibrium is possible. This means
that the Ginzburg–Landau equation (49) can describe a Hopf bifurcation (that is, the
transition from a steady state to a limit cycle) at least within the framework of the
parallel flow assumption. These results are in qualitative agreement with experimental
observations by Chen & Jirka (1995) and Balachandar et al. (1999) where periodic
structures are found for certain experimental conditions.

Grubis̆ić et al. (1995) presented results of numerical simulations of shallow wake
flows behind an obstacle (both linear stability results under some simplifying
assumptions and nonlinear wake development are discussed). The calculations are
performed in terms of the non-dimensional drag number r (which is related to S by
the formula S = 2r) for different positions downstream of the obstacle. In particular,
figure 9 in Grubis̆ić et al. (1995) shows that for S =0.2 a small finite velocity defect is
present very far downstream (in the region x0 > 7 where x0 is the distance downstream
from the centre of the obstacle). In addition, figure 10(b) in their paper (the graph
of convective growth rate) shows that for S = 0.2 the flow is stable for x0 > 7.5. Both
results indicate the existence of a finite-amplitude equilibrium far downstream. The
value of the parameter Uc/Ua − 1 at x0 = 7 (as follows from figure 9(c) of Grubis̆ić
et al. 1995) is about −0.6 and it is gradually increasing to zero as x0 increases.
On the other hand, Uc/Ua − 1 = −0.6 corresponds to R = −0.43. This value of R

is close to the one used in our weakly nonlinear calculations, namely R = −0.5,
and the corresponding value of Sc is Sc =0.195477. A qualitative comparison of
the base velocity profiles reported in Grubis̆ić et al. (1995) with those plotted in
figure 1 shows that the set of profiles in Grubis̆ić et al. (1995) can be approximated
by (19) with the value of N close to 1. However, no attempt was made at this
stage to find the exact value of N corresponding to the profiles reported in Grubis̆ić
et al. (1995).

Grubis̆ić et al. (1995) also determined the amplitude of the cross-stream velocity
component at saturation as a function of both the non-dimensional drag number r

and the position downstream of the obstacle. The maximum saturation amplitudes
for S = 0, 0.04, 0.08, 0.12, 0.16, 0.2 are about 1.0, 0.8, 0.5, 0.2, 0.05, and 0, respectively.
Therefore, the critical bed friction number for the numerical experiments of Grubis̆ić
et al. (1995) is Sc =0.2. Since Sc = 0.2 and Sc = 0.195477 are very close in magnitude,
comparisons between the data of Grubis̆ić et al. (1995) and the weakly nonlinear
analysis can be performed.

In order to compare the results of nonlinear model in Grubis̆ić et al. (1995) with the
Ginzburg–Landau model we make the following simplifying assumption. Consider an
equilibrium state Aτ = 0 and Aξξ = 0 which results from the along-stream evolution of
the flow in the limit ξ → ∞ and τ → ∞. It then follows from (49) that an equilibrium
amplitude |A|e =

√
−σ0/µ0 will be reached. In particular, the amplitude of cross-flow

velocity at saturation is As = kc|A|e = 0.9265
√

0.08989/4.337 = 0.13. That is, the model
predicts that decreasing the value of S by a small amount below 0.195477 leads to a
limit cycle with an amplitude of 0.13. The data of Grubis̆ić et al. (1995) show that
As = 0.14 when S = 0.14. This result shows some degree of consistency of the weakly
nonlinear results with the numerical data of Grubis̆ić et al. (1995) since the saturation
amplitude is, indeed, achieved when the value of S = 0.14 is smaller than but close
to the critical value of Sc = 0.195477. While encouraging, this preliminary agreement
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between the numerical data of Grubis̆ić et al. (1995) and the Ginzburg–Landau model
does not constitute a proof that the Ginzburg–Landau equation correctly describe
shallow water flows. A full spatio-temporal analysis of wake flows is necessary for
complete verification of the Ginzburg–Landau model. Recent results (see, for example,
Pier 2002) indicate that a combination of nonlinear analysis and methods of stability
theory can be a powerful tool for investigation of spatio-temporal dynamics of wake
flows.

More detailed experiments similar to those reported by Provansal et al. (1987) and
Leweke & Provansal (1995) are needed for the case of shallow wakes in order to
validate the Ginzburg–Landau model experimentally. In particular, transient shallow
wake experiments where the flow is accelerated from a stable state to an unstable state
are needed. Such experiments provide detailed spatial and temporal data of the along-
stream and across-stream velocity perturbations associated with the development of
the instability from its inception to its saturation. This information is essential for
determining the parameters of the Ginzburg–Landau equation and for assessing the
validity of this nonlinear equation in modelling flow instabilities and bifurcation in
shallow shear flows.

It is clear that the identification of the parameters in (49) and the validation of
this equation requires laboratory measurements of |A| versus t . The amplitude |A| is
related to the amplitude of oscillations in the cross-stream and along-stream velocities
by means of (21) and (32).

To obtain |A| versus t measurements the flow must be accelerated from an initial
bed friction number Si , to a final bed friction number Sf , such that Sf <Sc <Si . That
is, Sf needs to be small enough so that the saturation regime (limit cycle) is well
established. To ensure enough time for the instability to develop and reach the limit
cycle it is important that the time scale of the acceleration is significantly larger than
1/σ0. The data should be collected at a few points downstream of the obstacle and
should be repeated for different obstacle geometry. It must be noted here that the
experimental verification of the Ginzburg–Landau requires much more data than the
Landau equation due to the presence of diffusion in (49).

5. Conclusion
The flow pattern of water in the wake of islands exhibits a complex eddy-like

motion. Field, laboratory and theoretical studies show that these eddies create complex
flows which can trap sediments and pollutants and thus create poor water quality on
the sheltered side of islands. As mentioned in the Introduction, the understanding of
island wake flow is important in terms of water quality.

Stability theory can help in understanding the onset and the development of the
experimentally observed periodic structures in shallow wake flows (Ingram & Chu
1987; Chen & Jirka 1995; Balachandar et al. 1999). Previously published studies used
linear stability analysis under the rigid-lid assumption to investigate the onset of
instability of wakes in shallow water flows. The present work evaluates the accuracy
of the rigid-lid assumption. It is found that the error in calculating the critical value
of the shallow wake stability parameter S introduced by the rigid-lid assumption is
below 10% for the practical range of Froude number (i.e. FrH � 0.7). Therefore, the
rigid-lid shallow-water equations form an appropriate model for shallow wakes and
the flow structure is defined by the bed-friction number with the Froude number
playing a minor role. It must be pointed that the influence of the Froude number on
the stability results becomes apparent once it exceeds 1.0. Therefore, it is important
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that investigators ensure that the Froude number is kept within the practical range
(i.e. small).

The shape of obstacles (e.g. islands and headlands) is reflected in the shape of
the wake velocity profile. To gain an appreciation of the sensitivity of the stability
characteristics to the shape of the obstacle, the linear stability problem for different
base flow profiles is investigated. It is shown that the shape of the velocity profile has
a large influence on the stability characteristics of shallow wakes. Therefore, future
experimental work should consider both geometrical and dynamical similarities in
the experimental design.

Linear analysis defines the onset of instability. The next natural step is to
describe the nonlinear evolution of the most unstable linear mode and attempt to
reconcile the theoretical prediction with the observed shallow wake structures. Starting
from the rigid-lid shallow-water equations and using the method of multiple scales,
an amplitude evolution equation for the most unstable mode is derived. The resulting
equation has complex coefficients and is of Ginzburg–Landau type. The complex
coefficients of the equation are calculated and confirm the existence of a finite
equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle
oscillation. This is consistent with the flow patterns observed by Ingram & Chu (1987),
Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001).
In particular, Balachandar et al. (1999) classify the flows as deep–shallow wakes
and shallow–shallow wakes on the basis of the presence or absence of the vortex
street. Experiments show that deep–shallow wake flow patterns closely resemble the
structure of deep two-dimensional bluff body wakes. The vortices in such cases are
distinct and well organized; they increased in size downstream from the plate. The
vortex street pattern is shown to be maintained over a large distance downstream
(about 20 diameters for the experiments with a small cylinder in Chen & Jirka (1995)
and about 200 plate widths for the experiments with a plate in Balachandar & Tachie
(2001). Shallow–shallow wakes are characterized by relatively narrow wake regions.
In addition, vortex street patterns either were not observed at all or appeared to
be relatively weak and less organized in comparison with flows at larger depths.
It is also found that the degree of variation from the classical vortex street flow
increased downstream from the plate. Similar flow patterns were observed by Chen &
Jirka (1995) (they classify the flows as vortex street, unsteady bubble and steady
bubble). Reasonable agreement between the numerical data of Grubis̆ić et al. (1995)
and the linear and weakly nonlinear stability analysis provides further support that
the finite-amplitude equilibrium structures in shallow wake flows which represent the
transition from stable to convectively unstable wake may be described by the nonlinear
Ginzburg–Landau equation. However, a definitive conclusion on the applicability of
the Ginzburg–Landau type models for shallow wake flows is not possible at present
for it requires detailed data on the spatial and temporal growth of the instability.
Such data are currently not available.
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